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ABSTRACT

A numerical procedure is presented for the determination of the

dynamic response of rectangular plates and cylindrical shells subjected

to stationary time dependent loads as well as to multiple loads moving with

constant velocity along any path on the structure. The masses of the

moving loads are included in the analysis.

Finite element models are adopted to reduce the continuous media of

the plate and the cylindrical shell to systems having a finite number of

degrees of freedom, with inertia forces concentrated at a finite number of

nodes. Displacement functions are assumed for each of the constituent

elements to obtain node forces equivalent to the applied loading. The dis-

placement method of analysis is employed, considering three and six

degrees of freedom at each node for the plate and shell model, respectively,

to obtain a set of simultaneous differential equations describing the motion

of the models. These equations are solved by a step-by-step numerical

integration technique to find the displacements and the concentrated forces

at the nodes of the models.

Numerical results are presented for plates and for circular cylindrical

shells. The response of plates subjected to stationary impact load is in-

vestigated as well as the case of plates carrying single or multiple loads

and masses moving with various velocities. Both square and rectangular

plates, each with simply supported and clamped boundaries, are considered.

Also continuous plates clamped at the periphery are investigated. The

circular cylindrical shells considered in the numerical samples are subjected

to stationary impact loads only.

viii



This report includes most of the material in "Elastic Response of

Rectangular Plates Subjected to Dynamic Loadings", Report S-67-4,

which appeared in April, 1967. The scope of the latter report is extended

herein to include additional topics discussed above.
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INTRODUCTION

The availability of digital computers to solve large numbers of simul-

taneous algebraic equations has spurred the development of various finite

element techniques for plane stress problems, for plates in flexure, for

shells, and even for solids. In general, the finite element approach to a

continuous medium reduces it to a system with a finite number of degrees of

freedom, thereby facilitating the solution to problems of a mathematically

complex nature.

The method of analysis of a static plate or shell problem by a finite

element model is similar to the analysis of a framed structure. However,

dynamic analysis of a plate or shell with moving forcing functions requires

modifications to be discussed in the development.

As in the case of a framed structure with a large number of degrees of

freedom, the normal mode method of analysis for moving masses acting on

finite element models would be timewise prohibitive even when a large-scale

computer is employed.

No solutions are known for plates or cylindrical shells with arbitrary

restraints subjected to multiple moving forcing functions.

The method of analysis presented here is an extension of the procedure

1
H. Allik used to study the response of space frames to moving mass

loadings.

1The superscripted numbers refer to References.
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PURPOSE AND SCOPE

The purpose of this research is to develop an approximate method for

determining the elastic dynamic response of isotropic rectangular plates and

cylindrical shells. Stationary loads varying arbitrarily with time, as well

as loads and load-masses moving with a constant velocity across the struc-

tures are considered. The loads and masses are assumed to remain in con-

tact with the structure throughout the analysis.

The method of analysis is based on the theory of thin plates and shells

with small deflections. The approach used is a numerical one. The contin-

uous medium of the plate and the shell is each reduced to a system with a

finite number of degrees of freedom by means of a finite element model.

The distributed mass of the system is concentrated at a finite number of

points or nodes of this model. For a load acting at an arbitrary point of the

structure at any instant of time, a set of equivalent node forces is found by

assuming displacement functions for each of the finite elements. The as-

sumed displacement functions also permit the evaluation of a set of node

forces equivalent to the inertia forces associated with a concentrated mass

at an arbitrary point of the structure. Deformations and forces are obtained

only at the nodes of the plate and the shell.

The set of simultaneous differential equations of motion obtained in each

case is solved by the linear acceleration method, a step-by-step numerical

integration technique in which the accelerations of the nodes are assumed to

vary linearly over each time interval.



Numerical samples are presented to demonstrate the feasibility of the

solution with a large scale digital computer.

The applicability of the procedure to plates of variable thickness, to

orthotropic plates, to shells of arbitrary shape, and to other types of

structures is discussed.

3



HISTORICAL REVIEW

Exact solutions of the partial differential equations governing the dy-

namic behavior of plates and shells are available for only relatively simple

types of loading and special boundary conditions. Consequently, to obtain

solutions to many problems of practical interest approximate methods of

solution must be used. Such methods of analysis, which are numerical in

nature, have become more popular in recent years because of the availability

of electronic computers. In general, the approximate methods of solution

are of two basic types. In one case the governing differential equation is

solved by some approximate method. In the other case, rather than solve

the actual differential equation, some fictitious discrete element system is

substituted for the plate.

Of the approximate methods of analysis falling in the first category, the

most popular and rewarding one is the finite difference technique in which the

numerical solution of the governing differential equation is obtained at some

specified finite number of points by approximation of the partial derivatives.

An alternate approach to the approximate analysis of plates and shells is

by a discrete or finite element technique. These techniques can be divided

into two basic categories. One of these categories included the methods in

which the continuous medium is subdivided into a number of small elements,

and these elements are used to obtain the solution. For the sake of clarity,

this method of analysis will be herein referred to as the continuous finite

element approach. The stiffness matrix relating the displacements of the

nodes at the corners of the elements to the forces at these corners of the

4
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element has then been obtained. Once this stiffness matrix is available,

static problems can be solved by the conventional displacement method of

structural analysis. Alternately, the force method of structural analysis

has been employed with flexibility matrices.

A stiffness matrix for a rectangular plate element in bending has been

obtained by R. J. Melosh 2 by assuming third-order polynomials for the dis-

placements along the edges of the element.

were compared with known series solutions.

Numerical examples obtained

It was demonstrated that as

the number of elements used is increased convergence to the final solution

3
is not always monotonic. In a later paper Melosh provides a criterion to

insure monotonic convergence using an element stiffness matrix obtained by

assuming a more complicated function for the element displacements.

A different stiffness matrix for a rectangular plate element in bending

has been derived by O. C. Zienkiewicz 4, 5 and Y. K. Cheung 4 by assuming a

fourth order twelve-term polynomi_ function for the displacements of an

element.

Triangular plate elements have been used as well for flexure in the con-

tinuous finite element technique 6' 7, 8, 9. For example, R. W. Clough 8 has

compared the numerical results obtained by assuming various displacement

functions for an element to obtain the stiffness matrix. Clough indicated that,

for the example considered, convergence was monotonic as the number of

elements was increased. However, he also pointed out that convergence

does not necessarily imply convergence to the correct solution.

It has been observed that by assuming a displacement function for an

element, vertical displacement compatibility between adjacent elements for
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a plate in flexure can be maintained all along the edges of the elements, but

normal slope compatibility is in general violated. 5, 8, 10 T.H.H. Plan 10

indicates that normal slope compatibility could be maintained as well when

the element stiffness matrix is derived by assumed stress distributions using

the principle of minimum complementary energy.

On the other hand, as already mentioned, plates have also been analyzed

by various discrete or finite element methods in which some fictitious sys-

tem is substituted for the actual plate medium. It has been pointed out by

11
S. Spierig that the idea of representing a continuous medium by a frame-

work was conceived by F. Klein 12 as early as 1903. Klein indicated the

equivalence of the plane state of stress in a disk and in a grid framework.

In 1906 K. Wieghardt 13 applied this analogy to engineering problems. How-

ever, at that time Wieghardt approximated the stresses in frameworks from

the plane stress condition in a beam. In 1927, the ideas of Klein and Wieg-

hardt were used by W. Riede114 who calculated stresses in a continuous

medium by use of a grid of square elements consisting of bars. The analogy

of plates in flexure to frameworks was originated by A.P. Hrennikoff in

194015, 16. Hrennikoff 15 also derived frameworks analogous to a plane stress

condition in a disk. In considering a plate in flexure, Hrennikoff subdivided

the plate into small square elements, and then derived a framework element

analogous to the plate element. For Poisson's ratio of 1/3, such a square

framework element consisted of six bars, each possessing a flexural stiff-

ness. For arbitrary values of Poisson's ratio, a more complicated frame-

work model was used by Hrennikoff. More recently, S. Spierig 11' 17 has



extended Hrennikoff's ideas to devise framework element models for rec-

tangular, triangular and trapezoidal plate elements as well. These models,

however, are somewhat more complicated, and are all restricted to Poisson's

ratio of 1/3.

18
In a paper published in 1965, A. L. Yettram and H. M. Husain have

derived a relatively simple rectangular framework model for a plate in

bending for an arbitrary value of Poisson's ratio. This model (see Fig. 1)

has six bars as does the Hrennikoff's model for Poisson's ratio of 1/3, but

in addition torsional stiffnesses are prescribed for the peripheral beams.

For all of the framework element models described above, the model is

not a physical one since the bar stiffnesses may take on negative values for

certain elastic constants. This, however, places no limitations on the analogy.

With the framework element bar properties known, the framework ele-

ment stiffness matrix has been calculated. From that point on the analysis

by the framework analogy and by continuous finite element approach is iden-

tical. Deflections for a particular problem obtained by Husain 18 have been

found to agree closely by J. L. Tocher 19.

In addition to the framework analogies described above, various other

fictitious systems have been substituted for the plate in flexure to obtain ap-

proximate solutions. A.H.S. Ang and N.M. Newmark 20 have used a model

for the plate consisting of rigid bars, elastic hinges and coil springs. M.

Badir 21 has used a model with orthogonal beams and coil springs, while

E. Lightfoot 22 has used one with orthogonal beams and torsion bars. A.L.

23
Yettram and H.M. Husain have used a model of only orthogonally connected

beams, using iteration for Poisson's ratio other than zero.



For the analysis of static shell problems by a finite element approach,

a stiffness matrix for a plate element in plane stress has generally been

combined with one for a plate in flexure to include the membrane stresses of

the shell in the analysis. In addition to the plane stress framework models

used by Hrennikoff 15' 16 and Spierig 11' 17, which have already been men-

tioned_ there are various other models available for this purpose. For ex-

ample, Hrennikoff's plane stress framework model has been extended by

C.W. McCormick 24 and A.L. Yettram and H.M. Husain 25. The plane

stress framework model of the latter two authors consists of six beams, as

in the case of the framework model for out-of-plane bending by the same

authors. The beams possess stiffnesses for in-plane movement of the model.

In the continuous finite element approach for plane stress, rectangular

elements have been used, for example, by R.W. Clough 8' 26, and triangular

elements have been used by J.L. Tocher and B.J. Hartz 27 and by others 8' 28.

Extension of finite element techniques to cylindrical shells by use of the

framework analogies for plane stress and out-of-plane bending has been

suggested by Hrennikoff 16 and McCormick 24. Peste117, in fact, extended

the procedure to cylindrical shells using Hrennikoff's models, but only for

the limited case of Poisson's ratio of 1/3. Later, E.F. Benard 29 used

another type of a framework model to study the static behavior of cylindrical

shells. Zienkiewicz 5 has employed the continuous finite elements for plane

stress and out-of-plane bending to obtain a stiffness matrix for a rectangular

shell element, which can be used to analyze cylindrical shells. A. Hrennikoff
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3O
and S.S. Tezcan have used yet another approach to study the static cylin-

drical shell behavior. These authors have combined the continuous finite

element technique of Clough 26for plane stress with Yettram and Husain,s 18

framework element approach for out-of-plane bending to analyze cylindrical

shells. A discrete element model consisting of rigid bars and deformable

nodes has been used by B. Mohraz and W.C. Schnobrich 31 to study cylindrical

as well as other types of shells.

The dynamic analysis of plates and shells has been limited to relatively

simple cases. Special boundary conditions, simplified loadings, or both

have been used in such analysis.

The natural frequencies of plates in flexure have been studied by E. C.

Pestell7, 32, 33, 34 and F.A.

of Hrennikoff 15' 16.

Leckie32, 35 by employing the framework model

Exact solutions to the differential equations of motion governing the be-

havior of plates subjected to multiple moving mass loads have been obtained

by A.P. Cappelli 36 in the form of triple infinite series. These solutions,

however, are limited to plates with simply supported boundaries.

For cylindrical shells, mathematical solutions have been obtained by

J.P. Jones and P.G. Bhuta 37 for moving loads. These solutions, however,

are only for infinitely long cylinders subjected to symmetrical, ring loading

moving at constant velocity.

The dynamic response of space frames to moving loads and masses was

investigated by H. Allik 1 in 1966. Allik used a discrete mass model, con-

sidering six degrees of freedom at each node, to obtain the set of governing
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differential equations. Allik then solved these equations numerically by

several step-by-step numerical integration techniques. Of the methods used

in his study, Allik found the linear acceleration method to be the most efficient

technique time-wise for solving the differential equations by use of a computer.

Allik 1 has also pointed out that his procedure can be extended to study

plates and shells subjected to moving mass loads.
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b

METHOD OF ANALYSIS

A. Formulation of the Plate Problems

I. - Discrete Element Model

The response of rectangular plates to dynamic loadings can be de-

scribed approximately by the displacements of the plate at a finite number of

points. Since the method of analysis presented herein is based on the theory

of thin plates with small deflections, only the deflection of the plate normal

to its plane, and the rotations about the two axes lying in the middle plane of

the plate will be considered. In Fig. I is shown a rectangular plate of di-

mensions LX_ Ly and a constant thickness h with X and Y axes taken in the

middle plane of the plate, and the Z axis taken normal to that plane and di-

rected downwards, the plate is divided by an orthogonal grid into small plate

elements with dimensions L and cL. The intersections of the grid lines, i.e.

the corners of the small plate elements, will be referred to as the nodes. It

is at these nodes that the displacements are to be described.

A typical small plate element is shown in Fig. 2 with its orientation to

the XYZ coordinates of the plate. The displacements of the nodes of the plate

element, and the generalized forces, i.e. the forces and moments, acting on

the plate element at the nodes are shown in their positive directions in vector

notation. Right hand screw rule is used for the signs of the rotation and

moment vectors. Also shown in Fig. 2 are the element coordinates axes x

and y which will be used later.
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FIG. 2 - PLATE ELEMENT
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The sign convention and orientation used for the displacements of the

plate at the nodes and for the generalized forces acting on the plate at the

nodes are identical to those of the displacements of a plate element and of the

generalized forces acting on a plate element, as shown on Fig. 2. There-

fore, with the sign conventions adopted, plate displacements and plate generalized

forces can be transformed into displacements and generalized forces of the

element, or vice versa, by summations without geometrical considerations.

18
It has been proved by A. L. Yettram and H.M. Husain that an ana-

logous framework element of six beams with flexural and torsional properties

shown in Fig. 3 can be substituted for each of the small plate elements into

which the plate was divided. The beams of the framework element are rigidly

joined to the beams of the adjacent elements at the nodes only. Since in the

resulting framework model for the plate there may be two parallel beams be-

tween two interior nodes, the beams are imagined to occupy the same physical

space. Hence, strictly speaking, the resulting framework is considered here

to be a fictitious rather than a physical model for the plate.

Basically, the beam constants for the framework element of Fig. 3

18
were derived by Yettram and Husain by comparison of deformations of the

plate element of Fig. 2 and the framework element of Fig. 3 when uniform

moments and torques were in turn applied to the plate element and statically

equivalent concentrated moments and torques were applied at the nodes of the

framework element. Therefore inherent to this derivation is the assumption

that the distribution of moments and torques in the plate is such that linear

distributions of these results on a plate element. Thus the analogy of Yettram
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18.
and Husain is theoretically correct only in the limit when the elements

become infinitely small. However, elements of finite and relatively large

size yield results of sufficient accuracy, as will be demonstrated by the

numerical results presented subsequently.

2. - General Equations of Motion

Knowing the stiffness properties for each of the beams in the frame-

work element of Fig. 3, the stiffness matrix of the plate element can be as-

sembled to relate the node displacements to the node forces of the element by

the following expression.

Is,} {u,} (,)
where { S i } is the vector of the 12 generalized internal forces acting

at the nodes of element i. (See Fig. 2.)

[ki] isthel2xl2stiffnessmatrixofelementigiveninthe

Appendix.

u i } is the vector of the 12 of the uodes of thedisplacements

element i. (See Fig. 2.)

The equilibrium of generalized forces at nodes yields

/s,} (,)
i=l

where the summation extends over the n elements into which the plate was

divided. { R } , the vector of external forces acting at the nodes, con-

sists of the following:
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1.- Externalforces {Q}n

2. - Equivalent node forces

applied at the nodes.

Q I e from external forces applied

to the plate at points away from nodes.

n

IQ} {Fi}
e i=l

I

where I Fii is the vector of 12 generalized equivalent node

forces associated with element i. These will be derived in

a subsequent section.

3.- Inertia forces I R}in.

The inertia forces are found as follows. For an element i, by D'Alembert's

principle

(3)

where [mil is the diagonal 12x12 element mass matrix. The elements

of this matrix, along with the assumptions used for its

derivation, are given in the Appendix.

is the vector of the 12 accelerations of the nodes of the

element.

Summing the contributions from the inertia forces acting on all the

elements, by Eq. (3)

n

I R}in = - _"_ [mi] {u i}
i=l

(4)

or

{R}io=-Em] (5)
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where n is the number of elements into which the plate was divided.

n

[m] :Z
i=l

Substituting { Si }

m i ] is the mass matrix for the entire structure.

It can be assembled by placing the elements

of [ mi] in the appropriate rows and columns

of [m ] and adding the overlapping terms.

from Eq. (1) into Eq. (2) results in

n

{u,/
i=l

(6)

O1 _

where

{.}

n

[k] = i_=l [ki] is the stiffness matrix for the entire structure,

assembled in the same manner as the mass

matrix [m].

Substituting the components of { R } into Eq.

motion for the discrete element plate structure

where {Q}= {Q}n + {Q}e.

(7) yields the equations of

{Q}
It should be noted that this vector may

vary with time.

(7)

linear, second order differentialEq. (8) represents a set of simultaneous,

equations equal in number to the number of degrees of freedom for the

(8)
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discrete element plate structure.

reference to the plate boundary conditions.

restraints, after assembling the [ k ] and [

This equation was derived without making

To include these or any other

] matrices the rows and col-m
J

umns corresponding to the restrained displacement components should be

removed. Accordingly, the same rows are to be removed from the vectors

in Eqs. (5), (7) and (8).

Equation (8) was derived with rotary inertias included. When these

are not included, the number of equations can be reduced to the number of

degrees of freedom in deflection only, as shown in a subsequent section.

By use of the linear acceleration method, as shown later, node dis-

placements can be found for any time. Then, the concentrated forces and

moments acting at the nodes of element i can be found from

Isil-[ki] luil-I  }

The internal plate forces and moments concentrated at a typical interior

node can then be found by considering two adjacent elements at that node and

summing the forces and moments acting at that node on these elements.

Alternately, the plate forces and moments at the nodes can be ob-

tained from the transverse node deflections, using the well-known plate

formulas.

3.- Forcing Functions

a. Moving Forces

In the analysis of the discrete element structure,

external forces act only at the nodes.

it is necessary that

Since a moving load or a stationary
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i

load varying with time may be acting at an arbitrary point on an element of

the structure, a set of equivalent forces acting at the nodes of this element, which

would cause the same displacements in the structure, must be determined. In

the following derivation the load on the plate will be assumed to consist of

only force components, and it will be assumed to remain in contact with the

plate at all times.

Consider a moving force P acting in the Z-direction at an instant of

time t = t 1 when it is located on an element at x = a and y = b of the element

coordinates shown on Fig. 2. Applying virtual displacements _u. at this
1

instant of time at the nodes of this element, the deflection under the load

caused by 5u. is assumed to be
1

w ° (x, y, tl)

x=a

y=b

12

i=l

A i (x, y) 6u i (tl)

x=a

y=b

(10)

where A. (x, y) is the assumed deflection of the plate element due to a
1

node displacementu. = landu. =o for j fii. A. (x, y)
1 ] 1

is given in the Appendix.

u.1 --(tl) is the i-th virtual node displacement of the element in

orientation and sign convention identical to u. shown
1

on Fig. 2.

For the dynamic system at time tl, the virtualwork done by the equivalent

node forces F. must equal the virtual work done by the force P.
1
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Hence

12

Z F i Su._ (tl) = PWo (x, y, tl)

i=1

x=a

y=b

Substituting for w ° (x, y, t 1) from Eq. (10), Eq.

12 12

Z Fi 6ui (tl) = p E A i (x, y) Su i (tl)

i=1 i=1

from which the i-th equivalent node force is

(11) yields

x=a

y=b

(11)

(12)

F i = P A i (x, y) (i=l, 2,..., 12)

x=a

y=b

Equation (13) was derived for a single moving load. This equation ob-

viously is also valid for a stationary time-varying load P applied at

x = a and y = b. The equivalent node forces due to several stationary

time-varying loads or due to multiple moving loads can be obtained by

summing the equivalent node forces from Eq. (13) for each load applied.

b.- Moving Masses

To obtain the equivalent node forces resulting from a moving mass,

the interaction force between the plate and the mass must be evaluated. In

(13)
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this derivation, the moving mass on the plate will be assumed to remain in

contact with the plate at all times, and the rotary inertia effect of this mass

will be neglected.

It will be assumed that the deflection of a plate element under a mov-

ing mass at x, y on the element can be expressed by

12

w(x, y, t) =_ Aj (x, y) uj (t) (14)

j=l

where A. (x, y) is the same as in Eq. (10) if i = j.
J

uj (t) is the j-th actual node displacement of the element

nodes. (See Fig. 2.)

Since Eq. (14) represents the movement of the mass in the Z-direction

while the mass itself is moving along the plate, the deflection w in

Eq. (14) is

w(x, y, t) = w[x(t), y (t),t ]

Denoting by V x and V Y

mass along the plate,

dx
Vx- dt

v dy
y dt

the x and y components of the velocity of the

and hence, differentiating w twice with respect to time and using

Eqs. (16),

(15)

(16a)

(16b)
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2 02w 2 02w

_|x(t),_-_ y (t),t]=_ V x --_+V --+2Vy 2 x
Ox Oy

02w
V

y Ox Oy

a2 2 2w Ow Ow

+ 2V x OxOt +ZVy OyOt +_
(17)

Substituting the derivatives of w obtained from Eq. (14) into Eq. (17)

yields

12

(Vx 2 2Ix(t), y(t), t] = S Aj, xx uj+Vy

j=l

u +2VxVyA j xy u.Aj, YY j , ]

+ 2VxA'3, xfi'] + 2VyA.j, Yfi'J + A:uj)j
(18)

where A. etc., represents the second derivative of
J) XX )

A. with respect to x, etc. (See Appendix.)
J

For a moving mass M located at x = a and y = b at time tl, the asso-

ciated inertia force is obtained from D'Alembert's principle as

M w [ x(t), y(t), t]

x=a

y=b

t =t 1

(19)

where _ is given by Eq. (18). The i-th equivalent node force on an

element at time t 1 is determined by substituting expression (19) for P

in Eq. (13).



12

F i = - M _ (Vx 2 A i Aj, xxU" + Vy 2 A.A. u.3 1 3, yy 3
j=l

24

A.A. u. +2.VxAiAj, {I.+ 2 V A.A. {I.+2VxVy I 3, xy 3 x 3 y I 3, y 3

x=a

!y=b

t =t 1

(i=l, 2,... , 12) (20)

This equation can be written as

12

'  j)iF i = - (ki_ uj + d.*. u. + m.*.z3 3 z3
j-1

x=a

y=b

where * = M A i (Vx2Aj, + V 2A.kij xx y 3, yy
+ 2 VxVyAj, xY)/x=a

)y=b

(21)

* = 2 MA. (V xAj, +V A. )dij 1 x y 3, y
x=a

y=b

m..* = (MA i Aj)13
x=a

y=b

The vector of 12 equivalent node forces associated with element r is then

-IFr} = [kr*] {Ur I +[dr*] /{lr} + [mr*] {Ur}
(22)
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f- 1

where the 12x12 matrix L|kr*| J is assembled by placing each k.*. in the1j

[ *] and [m*] arei-th row and j-th column of the matrix. The matrices d r r

obtained similarly. Adding the contributions from all the moving masses on

all the elements of the plate yields

-{Qle=[k*]{uI+[_*]I_l +Ira*]I_}
n

whereIk*] = S [kr]
r=l

(23)

n

r=l

n

[m* 1 = S [mr]

r=l

where the summation is to n, the number of elements of the structure.

Adding Eq. (23) to the node forces in Eq. (8) gives the equations of motion

for the discrete-element plate with moving masses

[_] I_}+[o]/_/+[_]lu} {_l

where [M]=[m]+[m*]

and where { Q } includes the node forces from all forces, static and

moving, on the plate except those caused by the masses. Eq. (24)

(24)

(24a)

(24b)

(24c)
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represents a set of simultaneous, linear, second order differential equations

where the coefficient matrices vary with time.

As shown later, Eq. (24) can be solved for node displacements, vel-

ocities and accelerations at a given time. Then the concentrated forces and

moments acting at the nodes of element r can be found from

{u/+ [m;] I r} . [d;]

Alternately, as before, the plate forces and moments at the nodes can

be obtained from the transverse node deflections, using the plate equations

from elasticity.

Eq. (24) was derived with rotary inertias of the plate included. In

such a case the number of simultaneous equations in the set of Eqs. (24) is

equal to the number of degrees of freedom of the plate model considered.

When the rotary inertia of the plate is neglected, the number of equations

can be reduced as explained in a subsequent section.

B. Formulation of the Cylindrical Shell Problems

1. General Remarks

The analysis of cylindrical shells and the analyses of rectangular

plates is similar when finite elements are used for both structures. Due to

the presence of membrane stresses in a cylindrical shell, a finite element

model for the latter must, in general, possess six degrees of freedom for

each node, while a finite element model for a plate in flexure only has three

degrees of freedom at each node. Therefore, the stiffness matrix for a

shell element must be a 24 by 24 matrix. Moreover, because of the
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curvature of the shell, the coordinate systems of the overall structure and

its elements do not coincide. Therefore geometric transformation matrices

must be used to relate the displacements and forces from one coordinate

system to the other. Also, in addition to the influence function A. (x, y)
1

used for the plate, another influence function must be considered for the

shell because of the additional degrees of freedom present. Aside from the

differences outlined above, the method of analysis for a rectangular plate

and a cylindrical shell is the same.

2. Discrete Element Model

A right-handed cylindrical coordinate system XYZ, as indicated on

Fig. 4, is adopted for the overall shell structure. The X-axis is in the

middle surface of the shell and parallel to the axis of the shell. The Z-axis

is normal to the surface of the shell and directed inwards. This set of co-

ordinates is henceforth referred to as the system coordinates.

The rectangular finite elements for the shell, to be used subse-

quently, are obtained by subdividing the shell by an orthogonal grid parallel

to X and Y axes. The intersections of such grid lines will henceforth be

referred to as the nodes of the shell. Each of the small shell segments ob-

tained by such a subdivision is then replaced by a fiat plate. It is clear that

such a substitute structure of flat plate segments approaches the physical

structure of the actual shell only in the limit as the grid size becomes in-

finitely small. For any finite sizes of the plate segments, the actual

cylindrical shell structure can only be approximated.
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CYLINDRICAL SNELL
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On Fig. 5 is shown a typical shell element, i.e. a small rectangular

plate that was substituted for a small shell segment as described above. The

corners of such an element coincide with the nodes of the shell. It is at

these corners, or nodes, that displacements and concentrated plate forces

are to be considered. The right-handed element coordinate system shown

on Fig. 5 is oriented so that the x-axis is parallel to the X-axis of the system

coordinates, and the z-axis is normal to the element and directed toward the

center of curvature of the shell. The node displacements u. and the gener-
1

alized node forces Si, which always refer to the element coordinate system,

are shown on Fig. 5 in their positive directions. Vector notation with right-

hand screw rule is used for moments and displacements on the figure.

The sign convention and orientation used for the node displacements

qi and node forces Qi, which always refer to the system coordinates, is

shown on Fig. 6. Again a right-hand screw rule is used for the moment

and displacement vectors.

It is to be noted that the numbering of displacements and forces on

both Fig. 5 and 6 refers only to a relative sequence adopted in conjunction

with matrices to be developed subsequently.

The orientation of the system coordinates YZ with respect to the

element coordinates yz is indicated on Fig. 7. For a circular cylindrical

shell the angles a L and a R are equal.

In the subsequent analysis of the cylindrical shell, the framework

analogy for plane stress developed by Yettram and Husain 25 is combined with

the framework analogy for plates in flexure by the same authors which was

already discussed.
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As for plates in flexure, Yettram and Husain 25 have also shown that

for a plate in plane stress an analogous framework of beams can be sub-

stituted to approximate the displacements and stresses in the plate. For

each rectangular plate element six fictitious beams are substituted. The

arrangement of the beams in this analogous framework element is identical

to that of the framework element for a plate in flexure shown on Fig. 3.

However, for the framework element for plane stress all of the beams

possess extensional stiffnesses, and the four peripheral beams also have

flexural stiffnesses for in-plane bending. The derivation of the above beam

constants is quite similar to the derivation of beam constants for the frame-

work analogous to a plate in flexure. Thus, the assumption used for the

plate in plane stress is that the direct stresses and shears are constant

along the edges of an element. The implications of such an assumption are

analogous to those for a plate in flexure.

Since in the subsequent analysis linear theory is used, with changes

in geometry not being considered, the beam.properties for plane stress and

those for out-of-plane bending may be combined to obtain a framework

model analogous to a shell element, as to the one on Fig. 5. Such a frame-

work model for a shell element with the appropriate beam constants is

shown on Fig. 8.

3. General Equations of Motion

With the beam constants of a framework model shown on Fig. 8, the

stiffness matrix of the shell element can be assembled. If all the elements

of the shell are of the same size, then the element stiffness matrix is
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identical for all of the shell elements. However, for a cylindrical shell that

is not circular, it may be convenient to vary the element length in the y

direction for different elements.

node forces for an element i by

The node displacements are related to the

is the vector of the 24 generalized internal forces, ex-

pressed in the element coordinates xyz, acting at the

nodes of shell element i. (See Fig. 5.)

is the 24 x 24 stiffness matrix of shell element i discussed

in the Appendix.

is the vector of the 24 displacements of the nodes of shell

element i, expressed in the element coordinates xyz. (See

Fig. 5. )

Node displacement in system coordinates are transformed into those in

element coordinates by

From Eqs.

displacements / qi}

(26)

is the vector of the 24 displacements of the nodes of shell

element i, expressed in system coordinates.

is the 24 x 24 geometric transformation matrix for shell

element i, given in the Appendix.

(26) and (27), the node forces of element i resulting from node

are
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The equilibrium of generalized forces at nodes requires that

n

IR}-r_[c,]_ls,l
i=1

(29)

where the summation extends over all the n elements of the shell, and

where { R} is the vector of resultant node forces, to be explained sub-

sequently. Substituting Eq. (28) into (29) yields

n

I_}_ [_]_[_,] [c_]I.,}
i=l

(30)

This equation, which relates the node displacements in system coor-

dinates to the resultant node forces, can be rewritten as

where[k]= _ [ci]T[ki] [Ci]

i=l

{R}

_ _x_e.n__orces{_}
coordinates XYZ.

is the stiffness matrix

for the entire shell structure. It is assembled by first

transforming each of the element stiffness matrices as

indicated, and then placing the elements of each of these

transformed matrices in the appropriate rows and col-

umns of[ k], adding the overlapping terms.

, the vector of resultant node forces, consists of the following:

applied at the nodes, expressed in system
n

(31)
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. E uiv.lontnode orces{Q}e,expressedinsystemcoordina es,
from forces acting on the shell away from the nodes:

n

{Q}e = _ [ci]T {Fi}
i=l

(32)

.

I

where I Fi ] is the vector of the generalized equivalent node

forces associated with shell element i. These will be derived

in a subsequent section.

Inertia forces { R } in associated with the inertia of the

structure. These forces, expressed in system coordinates,

are found as follows. Node accelerations { _iil

coordinates transform into node accelerations

coordinates by

in system

{ui} in element

From D'Alembert's principle, the inertia forces associated

with the nodes of shell element i are

(33)

where [mi]is the 24x24 shell element mass matrix. The elements

of this matrix, along with the assumptions used for its

derivation, are given in the Appendix.

(34)

Transforming the forces of expression (34) into system coordinates and

summing over all the n elements of the shell structure yields
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n

{R},n
i=l

(35)

or

n

where [m] = S [ ci]T Emil [Ci] isthemass matrix for the

i=l

entire shell structure, assembled in the same manner

as the structure stiffness matrix [ k ]. (See Appendix.)

Substituting the components of { R } into Eq. (31) yields

{ Q }e is a vector which varies with time in
where

[m] {}t}

general.

Eq. (37) is completely analogous to Eq. (8) obtained for the plate.

Thus, the number of equations represented by expression (37) is equal to

the number of degrees of freedom of the finite element shell structure.

However, in contrast to Eq. (8), Eq. (37) is associated only with the sys-

tem coordinates. Boundary conditions or other restraints for the shell

structure are introduced in the same manner as for plates.

The method of solution used for Eq. (37) to find node displacements,

which appears in a later section, is the same as that for Eq. (8). Once

the node displacements are knows for any instant of time, the concentrated

forces and moments acting at the nodes of element i can be found from

(36)

(37)



Eq. (9), where _ui) is obtained from Eq. (27). Alternately, the plate

forces and moments can be found from the node deflections using the

equations from elasticity.

4. Forcing Functions

a. General

It is recalled that before a framework was substituted for the

cylindrical shell, each of a finite number of curved small shell elements

had to be replaced by a small flat plate segment. Since in the following

development it is necessary to know the components of velocity of the

moving load-mass along such a flat plate element, it can be assumed that

the position of a load, which at any instant of time acts at an arbitrary

point of a curved shell element, is at a point on a flat plate element which

is on the line from the point of application on the curved shell element

normal to the corresponding flat plate element. Although there will be

apparent abrupt changes in the direction of motion of the load as it moves

from one flat element to the next, these abrupt changes may be discarded

since they do not exist on the actual curved shell. Since the X-coordinate

of the system coordinates is always parallel to the x-coordinate of the

element coordinates, the corresponding components of velocity of the

moving load are equal on a curved shell element and on its corresponding

flat plate element. This, however, is not the case with the Y and y com-

ponents of velocity of the moving load, referring to system and element

coordinates, respectively. Obviously, if a sufficiently large number of

38
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finite elements is used in the Y-direction so that the arc length of the

curved shell element is approximately equal to the length in y-direction

of the flat plate element, then the corresponding components of velocity

may be considered to be equal. To obtain the y-component of velocity

more exactly, however, the Y-component of velocity should be multiplied

by the ratio of the length of the flat element in y-direction to the arc

length of the corresponding curved shell element. The theoretically exact

relation between these velocity components could, of course, be calculated

from geometry, even for a non-circular cylindrical shell, but for practical

purposes this is not justified.

As mentioned earlier, the subsequent development is for loads and

masses moving with a constant speed along the cylindrical shell.

The derivation of the equivalent node forces for the cylindrical

shell requires the assumption of certain displacement functions for a flat

plate element. Such functions are assumed since no exact functions are

available. In this derivation, the moving loads will be assumed to consist

of forces but not of moments.

b. Moving Forces

As in the analysis of plates, also in the analysis of cylindrical

shells by the finite element technique it is necessary that all forces act

at the nodes. Thus for a moving load, which may act at an arbitrary

point of the shell at a given instant of time, it is necessary to find a set

of equivalent node forces at that instant of time that would cause the same

displace ments in the structure.
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In the subsequent development it will be assumed that the load or

mass, as it moves along the shell, remains in contact with the shell at

all times.

Consider a moving force P at an instant of time t = tl, acting in

an arbitrary direction, when it is located on a flat element at x = a and

y = b of element coordinates. The force P is divided into its compo-

nents P P and P The first two components cause plane stress in
x, y z.

the element, while Pz causes out-of-plane bending of the element. The

two cases are considered separately.

The equivalent node forces from P are the same as those obtainedz

for a plate element in the analysis of plates, given by Eq. (13). Only

the subscripts i have to be modified in that equation, in order that the

numbering of the components of the equivalent node forces corresponds

to that indicated in Fig. 5 for a flat shell element. Therefore in the

subsequent analysis only components P and P need to be considered.
x y

In the analysis by a finite element approach, after the structure

stiffness matrix has been assembled, the procedure is identical re-

gardless of whether a framework analogy or some continuous finite element

technique is being used. This justifies the derivation of equivalent node

forces independently from the particular finite element technique adopted

for the rest of the analysis, without any inconsistencies resulting.

With the Yettram and Husain 25 framework model for plane stress,

twelve possible node forces are associated with any one element. How-

ever, with some other continuous finite element techniques for plane stress,
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only eight such forces would be considered. But in the analysis of an

"angular" shell structure, corresponding to each of the above alternatives

there would still be the same number of equilibrium equations in the

system coordinates. Therefore, in the following derivation, the calculation

of only eight equivalent node forces for the plane stress condition implies

no inconsistencies.

Consider Px, the x-component of the moving force P, at an instant

of time t=t 1 located on an element at x=a and y=b. Applying virtual dis-

placements _u. (i=l, 2 7, 8, 13, 14, 19, 20) at this instant of time at the nodes
1

of this element, the translational displacement of the point (a, b) in the

x-direction, due to virtual displacements Su. is assumed to be
1,

w x (x, y, tl) I X=ay=b= _i Bi(x' y) Sui(tl) x=a

y=b

(38)

where i= 1, 7, 13, 19

Bi(x , y) is the assumed displacement of the element in

x-direction due to a node displacement u. = 1 and
1

u. = 0 for j _ i, when i=l, 7, 13, 19. (See Appendix. )
J

6ui(t 1) is the i-th virtual node displacement of the element,

in orientation and sign convention identical to u.
1

shown in Fig. 5.

As in the plate analysis ( See Eqs. (10) to (13).),

expression for the i-th equivalent node force

this leads to the
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Fi = Px Bi (x, y)

x-a

y=b

(i=1,7, 13, 19)

Similarly, from the y-component of the moving force P

F i = PyB i (x,y)

x=a

y=b

(i=2,8, 14, 20)

(38) except that here itIn this equation B. (x, y) is defined as in Eq.
1

refers to the assumed displacement in the y-direction, for

i=2, 8, 14, 20. (See Appendix. )

Although it appears from the foregoing development that four

equivalent node forces for each of Px and Py are determined independ-

ently, this is seen not to be the case when reference is made to the

Appendix. It is seen from the Appendix that the displacement functions

B. (x, y) for i=l, 7, 13, 19 are related to B. (x, y) for i=2, 8, 14, 20 by
1 i

some common constants. Therefore, the equivalent node forces due to

Px and those due to Py are in fact related, and can not be determined

independently.

The comments made in the plate analysis for stationary time-

varying loads and for multiple moving loads also hold here.

c. Moving Masses

As in the plate analysis, the interaction force between the shell

element and the mass is evaluated in order to obtain a set of equivalent

node forces resulting from a moving mass. Again, the rotary inertia

effect of the mass is neglected.

(39)

(40)
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The interaction force between the shell element and the mass can

be divided into components along the x, y, and z directions. The z-compo-

nent of the interaction force has already been determined in the develop-

ment of the plate analysis. Thus, the equivalent node forces due to this

force are given by Eqs. (20) and (21). However, the subscripts i and j

have to be modified in that expression so that their numbering corresponds

to the numbering of node forces and displacements indicated on Fig. 5.

The determination of the x and y components of the interaction

force is similar to that for the z-component, except that here the displace-

ment function Bi(x , y) is used. This function and its appropriate sub-

scripts are those used in the previous section when equivalent node forces

due to a moving load were determined. Thus it suffices but to write down

the expression, analogous to Eq. (20), for the equivalent node forces as-

sociated with the x and y components of the interaction force. That is,

for a mass M at time t=t 1 located at x=a and y=b of an element,

=- Bi(V2xBj,xxUj÷v2B u.Y 3,YY ]
J

+ 2VxVyBj, xyUj + 2VxBj, xUj + 2VyBj, y_j

o.

+ Bjuj)

x--a

y=b

t=t 1

(41)
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where i and j each = 1, 2, 7, 8, 13, 14, 19, 20

B i is defined in Eq.(38)and given in the Appendix.

B. is defined as B. with j substituted for i.
J 1,

Eqs. (41) and (21) can be together written as

Fi = - _ (k..*lju.] + d..*l]_'] + m.*.uj)l]
J

x=a

y=b
t=t

1

(42)

where i and j each take on all values from

1 to 24 except 6, 12, 18, 24.

and where, for i and j each = 3, 4, 5, 9, 10, 11, 15, 16, 17, 21, 22, 23,

k*. = MA. (V: A. +V 2 A.
1] 1 ],xx y ],yy + 2 VxVyAj, xY )

x=a

y=b

(42::_)

d.*. = 2 MAi(VxAj.1] ,X + VyAj, y)

x=a

y=b

(42b)

m.*. = MA.A.
1j 1 j

x=a

y=b

(42c)

and where, for i and j each = I,2, 7,8, 13, 14, 19, 20,

* V 2 + V 2 B.
kij = M B i ( x Bj, xx y j, yy + 2 VxVyBj, xY )

x=a

y=b

(42d)
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dij ---2 MB i (VxBj, x

m.. = MB.B.
1] 1 j

x=a

y=b

+ VyBj, y)

x=a

y=b

(42e)

(42f)

Eqs. (42a, b, c) are associated with out-of-plane bending of the element,

and Eqs. (42d, e, f) are associated with plane stress condition of the

element. All k.. d.. and m.. not specifically defined by Eqs. (42a)
1], 1], 1]

through (42f) are zero.

Eq. (42) was derived for a single moving mass on an element.

For several moving masses on the same element, the equivalent node

forces are obtained by adding those caused by each mass, using Eq.

(42). Thus the vector of all equivalent node forces, caused by moving

masses, that are associated with element r is defined by

-I Fr} = [k:] {Ur} + [d:] I_} (m;]{Ur} (43)

For convenience, Eq. (43) is written with the vectors each having 24

rows, although the rows 6, 12, 18 and 24 are zero. Similar statement

holds for the 24x24 matrices in this equation.

[kr] [d* *, r]and [mr] are assembled by placing each kij '

m.. in the i-th row and j-th column of the respective matrix.
1j

The 24x24 matrices

d.. and
1j,



J*

Transforming Eq. (43) to system coordinates, and adding the

contributions from all the moving masses on all the elements of the

structure yields

-{Qle=[ k*] Iq} +[ d*] ICl]+[m "] {ci }

n

where {Q }e = _ [Ci] T {Fi}

i=l

n

i=l

n

i=l

n

[m*] 5
i=l

where the summation extends to n, the number of elements used for

the shell. Although for only a few moving masses on the shell struc-

ture most of the rows and columns of the matrices (44b, c, d) would

consist of zeros, for reasons that will become apparent later, it is

more convenient to arrange the matrices as shown.

Adding Eq. (44) to the node forces in Eq. (37) yields the fol-

lowing equations of motion for the finite element shell structure sub-

jected to moving masses

46

(44)

(44a)

(,t4b)

(44c)

(44d

(45)
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w oro[M]-[m']+[m]
[D]; [d']

shell,

static and moving, except those caused by the moving masses.

Eqs. (45) are analogous to the corresponding Eqs. (24) de-

rived for the plate. Thus the remarks made in reference to Eqs.

(24) in regard to a plate also hold here in regard to the cylindrical

shell. Therefore, rather than solve Eqs. (24) and (45) separately

for the plate and the shell, respectively, these sets of equations will

be treated together in the subsequent sections.

C. Solution of Equations of Motion

I. General Case

For the solution of equations of motion in the general case it

is assumed that all the inertia effects of the structure, including those

of rotary inertia, are included. As mentioned previously, since the

equations of motion for the plate structure are analogous to the

equations of motion for the cylindrical shell structure, the two cases

will be treated together. Henceforth reference will be made only to

the equations of motion for the plate structure. However, all the dis-

cussions, the development and the solutions are equally valid for the

equations of motion for the shell structure when q is substituted for u.

(45a)

(45b)

(45c)
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i I

In the equations of motion (8)the vector I Q I may vary arbitrarily

with time. Moreover, when moving masses are considered, the coefficient

matrices in the equations of motion may be time-dependent, as seen from

Eq. (24). Hence only numerical solutions to the equations of motion are

generally possible. Of the various numerical techniques available,

Allik 1 has studied the linear acceleration method, Runga-Kutta method

due to Gill, Milne's 4-th order method and Houbolt's method. Of these

methods, Allik 1 has found the linear acceleration method to be the most

efficient one in computer time. Hence this method, as used by Allik 1,

will be adopted here. It should be noted, however, that other methods

are applicable here as well.

The accuracy of the solution of an initial value problem by a step-

by-step numerical integration method depends on the size of the time in-

terval h chosen. Since it is not possible in general to determine the

required size of the time increment h beforehand, a solution for a given

h can be considered acceptable when it agrees sufficiently well with a

solution obtained for a smaller time increment.

In the linear acceleration method the accelerations of the nodes of

the plate are assumed to vary linearly for a small time increment h.

Hence the acceleration in the interval between times n and n + 1 is

given by

l ee oe

= + - (t t n) (46)i] fin R (Un+l Un) -
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The expressions for the displacements and velocities used in the linear

acceleration method, which have been derived previously from the as-

sumption of Eq. (46) 38 are as follows

h 2 + h 2

a. Problem with Moving Forces

The equations of motion (8) for the end of a time interval can be

written as

(47)

(48)

[m] {_}n+l=-[k] {U}n+l+{Q}n+l (49)

Substituting for { u }n+l from Eq. (47) and rearranging yields

([m] +_---2[ k] ){_ }n+l= {Q}n+l

(

which can be written as

[E] {C }
+ h2

where [E] =[m] _-- [ k] (51a)

{ G } = right side of Eq. (50) (5 lb)

Since [ E ] depends only on the properties of the discrete element

plate, the node accelerations at the end of the time interval can be

calculated from Eq. (51) as

{u }n+l : [E]-I { G } (52)
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Hence the displacements and the velocities at the end of the time interval

can be calculated from Eqs. (47) and (48). It should be noted that the

vector I G I in Eq. (52) depends on the displacements, velocities, and
/

at the beginning of the time increment. Therefore I G Imustaccelerations

be evaluated for each time interval.

The linear acceleration method is self-starting. With the initial

conditions of zero displacements and zero velocities at each node_ the

initial accelerations are found from Eq. (49).

It should be noted that since the equations of motion (8) are valid

for moving loads as well as for stationary time-varying loads, the fore-

going solution also holds for the latter case.

b. Problem with Moving Masses

The equations of motion (24) for the case with moving masses can

be solved as follows. Equation (24) for the end of the time interval n+l

can be written as

[M] {ii}n+l+[D] I _l}n+l+[K] {u }n+l= {Q}n+l

Substituting for {U}n+land{u }n+lfromEqs. (47) and (48) gives

(I M] ) I_ln+l= {QIn+l- [D]/lUln+

h 2

which can be written as

I ln+ I°1

(53)

(54)

(55)
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h

In Eq. (55)

= Right hand side of Eq. (54)

[E]aswellas{G} must be re-evaluated for each time

interval. At the end of the time increment, the node accelerations, dis-

placements, and velocities can be evaluated from Eqso (55), (47), and

(48), respectively.

2. Case when Rotary Inertia Neglected

a. Problem with Moving Forces

As previously mentioned, when the rotary inertia of the structure

is neglected, the number of equations of motion for a plate subjected to

moving loads or to stationary time-varying loads, as given by Eqs. (8),

may be reduced. In such a case, the equations of motion (8) can be

partitioned as

[m]l 1 {U }1

w_ere{_}1

{u}2

[kkli2]{u}{Q:I
is the vector of node deflections

associated with inertia forces.

is the vector of node rotations

not associated with inertia forces.

From Eq. (56) it follows that

[mill {U }1 + [kill {u }1 +[_]12{_}_ {Q}1

(55a)

(55b)

(56)

(57)
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and

[k]21lu_ +[k]2_{-}_:{Q}_

From Eq. (58)

u}2=-

-I -I

+[_].{Q}_

Substituting Eq. (59)for {u }2 in Eq.

motion in terms of {u }1 only:

(57) yields the equations of

-1

-I

where [K] : [kill- [ k]l 2 [k]22 [k]21

(58)

(59)

(60)

(60a)

Using the linear acceleration method of numerical integration on

Eq. (60) yields

{Ultn+l = [El -1 {G} (61)

where { Ul} n+l = { _ }I at the end of the time increment considered.

+ h2
[E]= [m ]11 6-[ K], where[K]isdefinedbyEq. (60a).

and where

-1

'{G} = {Q1tn+l- [k]12 [k]22 {Q2tn+l

lu,t,,+hI,:,.,},,+ h2
-3- {Ul}n)

In the latter expression the subscripts of Q, u and its derivatives have

been moved inside the brackets only for clarity.
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Once the node accelerations at the end of a time increment have

been determined by Eq. (61), the displacements and velocities for the

end of the time interval can be found from expressions analogous to

Eqs. (47) and (48), and from Eq. (53).

b. Problem with Moving Masses

The number of equations of motion for a plate subjected to moving

masses, as given by Eqs. (24), may be reduced when the rotary inertia

of the structure is neglected. However, in this case, the reduced number

of equations will not be equal to the number of degrees of freedom in

deflection for the structure. The reduced number of equations, as shown

subsequently, changes in general whenever a moving mass crosses from

one element to another.

The equations of motion (24) can be written as

[m*] /ul --
As previously mentioned, the number of equations constituting the set of

equations (62) is equal to the number of degrees of freedom of the plate

structure. Define

N
S

D
S

and,

M
S

= number of degrees of freedom of the structure.

= number of degrees of freedon of the structure in deflection.

for a given instant of time, define

= number of equivalent node moments from all of the moving masses

at the instant of time considered.

(62)
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When the rotary inertia effects of the structure are neglected,

instant of time, Eq. (62) can be partitioned as

at any given

Jr

where { u }1 is the vector of D node translational displacementsS

associated with inertia forces and M node rotations
S

for which there correspond equivalent node moments

from moving masses. The vector consists of

(D s + Ms ) rows.

u }2 is the vector of those node rotations for which no

corresponding equivalent node moments exist from

moving masses. This vector consists of

(N s - D s - Ms) rows.

and where other vectors and submatrices are defined in accordance with

{U}l and {u } 2" From this definition it follows that

[m*] mn =[d*] mn =[k*] mn =[0] except when m=n=l

(63)

(64)
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With Eq. (64), Eq. (63) yields

+

and

From the latter equation

[_'],, I,),+ ([,],,+ [,'],,)lu),

[ _]_ {u)_ : {Q1_ (65>

{u}2 {Q)2

-1

lu)_: [,]. (/,)_ [,]_,lu),)

(66)

(67)

Substitution of Eq. (67) into Eq. (65) gives

[M ]11 {u }1 + [D ]11 {u )1 + [K']ll {U)l : {Q' )1

where [MIll: [m*]ll + [mill

[-],,: [_*],,
-1

-I

{Q'}_ {Q), [,],_[_]. {Q)_

(68)

(68a)

(68b)

(68c)

(68d)

Thus the set of equations of motion (24) has been reduced in number

to (D s + Ms) ) as given by Eq. (68), where M s may vary with time.

Consider first a time interval between times t n and tn+ 1

such that none of the moving masses on the structure crosses from one

element to another during this interval. Hence, for such an interval,
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the solution of Eqs. (68) proceeds in the same manner as that for Eqs.

(24). Thus it follows that

[E] {Ul}n+l= {G}

+ h 2
where [E] = [MIll +h [D]I 1 -6-[K']l 1

+h
{G }= {Q_}n+I-[D]ll( {Ul}n 2 {Ul}n)

I 11 e )n+h {Ul}n +-3-{ul}n

(69)

(69a)

(69b)

In Eqs. (69), (69a) and (69b), the subscripts of Q', u and its

derivatives have been moved inside the brackets only for clarity.

The node accelerations at the end of the time interval considered

are found from Eq. (69), and the corresponding displacements and

velocities are determined as in previous cases.

Consider next a time interval between times t n and tn+ 1 such

that one or more of the moving masses on the structure does cross

from one element to another during this interval. For such a time in-

terval the numerical integration technique must proceed somewhat

differently from the previous case because { u } 1 with its derivatives

at time t n and { u } 1 with its derivatives at time tn+ 1 do not refer to

the same degrees of freedom. However, this poses no difficulties

since the displacements, velocities, and accelerations corresponding to

all possible degrees of freedom can be determined for time t the
n,

beginning of the time interval, before proceeding to solve for node
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accelerations at time tn+l. Knowing all the node displacements, along

with the node velocities { _ } 1 and the node accelerations { u }1 at time

t the remaining node velocities and accelerations at time t can be
n, n

found by differentiating Eq. (67). It should be noted that since the

equivalent node forces have been assumed to remain constant over any one

time interval,

101

=1
{Q2}n h ({Q2}n+l {Q2}n)

and

Since all the node displacements, velocities and accelerations are thus

determined for time t the right side of Eq. (69b) is known. Hence the
n,

numerical integration can proceed to time tn+ 1 to find the node accelera-

tions by Eq. (69), and the corresponding displacements and velocities

as previously described.

When the reduced number of equations represented by expression

(68) is solved by the linear acceleration method, matrix [ E 1 must be

inverted at each time interval. Moreover, the structure stiffness matrix

must be partitioned anew for each time interval during which a moving

mass crosses over from one element to another. For such a time interval

the matrix L[k _122 as well as the matrix [ E ] must be inverted.

(70)

(71)



NUMERICAL RESULTS

58

Numerical problems have been solved for plates and cylindrical

shells subjected to dynamic loadings in order to demonstrate the feasibility

of the analytical procedure. It was not intended to make a general study

of the effects of the various parameters on the behavior of plates and

cylindrical shells. All numerical results presented have been obtained

through use of the CDC 6600 digital computer located at New York

University.

A. Plate

1. General

Numerical results are presented here for square and rectangular

plates, either with simply supported or clamped boundaries. The loads

considered include impact, moving force, and moving mass loads. Also,

two problems have been solved for continuous plates with a moving load.

In all cases, the plate material has been assumed to weigh 495 lbs./cu, ft.,

and to have a modulus of elasticity of 30,000 ksi and a Poisson's ratio of

0.30. The weight of the plate has been neglected except for calculation of

the mass parameters.

Because of the availability of only a very limited number of numerical

results for static plate solutions using the Yettram and Husain 18 framework

analogy, the results of some studies are presented in what follows to illus-

trate the accuracy of the use of a finite element approach to obtain static

plate deflections. A simply supported 60.0" square plate of 0.25" thickness
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was subjected to a 1. OK central load. In Table 1, deflections obtained by

39
Navier solution are compared with those obtained by using Yettram and

Husain 18 framework analogy with various grid sizes. Deflections are

compared for the center of the plate, and for a point equidistant from the

center and the corner of the plate, referred to as the quarter point. In

Table 2, similar comparisons are made for a clamped plate of the same

dimensions and with the same load. Here, however, the comparison is

made with Timoshenko's solution by superposition as extended by Young 40.

From the comparison in Table 1, it is seen that Yettram and Husain's

method with a 6x6 grid yields a center deflection for the simply supported

plate which differs only 1.1% from the Navier solution. For the clamped

plate, the corresponding deviation from Timoshenko-Young solution is

even less.

It will be seen subsequently that also under dynamic loadings, in

general, the improvement in the accuracy obtained for plate deflections is

small as the grid size is made finer, thereby justifying the use of a rela-

tively coarse grid. However, it should be noted that in case the plate forces

and stresses are to be calculated, a relatively finer grid may have to be

adopted.

In all subsequent problems for plates subjected to impact loads or

to moving forces, as well as in the calculation of natural frequencies, the

rotary inertia effects of the structure have been neglected. In calculating

the response of plates to moving masses, however, these effects have been
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TABLE 1

Deflections of a Simply Supported Plate (in.)

Deflection at Deflection at

Center Quarter Point

6x6 Grid

8x8 Grid

10xl0 Grid

12x12 Grid

14x14 Grid

Navier

0. 9750

0. 9741 0.4004

0. 9737

0. 9735 0. 4000

0. 9733

0. 9644 0.3998

TABLE 2

Deflections of a Clamped Plate (in.)

Deflection at Deflection at

Center Quarter Point

6x6 Grid

8x8 Grid

10xl0 Grid

12x12 Grid

14x14 Grid

Timoshenko-Young

0.4738

0.4721 0. 1033

0.4715 -

0.4712 0.1029

0.4711 -

0.469 0. 103
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included. For all problems, the mass matrix has been calculated by the

direct lumping procedure explained in the Appendix.

2. Impact Loads

The simply supported plate shown on Fig. 9 was subjected at its center

to the impact load indicated on that figure, applied normal to the plate. At

first, a 6x6 grid was used, resulting in a total of 36 square elements for the

plate. For such a finite element structure, the fundamental natural period

is 0. 0120 seconds, and the smallest natural period is 0.833x10 -3 seconds.

The response curves for the center deflection, along with the static deflec-

tion curve, are shown on Fig. 9 for two time intervals h. The time interval

of 0.25x10 -3 seconds corresponds to 0.30 T where T is the shortest
S, S

natural period, while the time interval of 0.10xl0 -2 seconds corresponds

-3
to 1.2 Ts. The response curve for a time interval of 0.10xl0 seconds

-3
is almost identical to the one for 0.25x10 seconds on Fig. 9. Because

of graphical difficulties, this curve is not shown on the figure. The re-

sponse curves for the deflections at all other nodes indicated a smaller

variation with the three time intervals used than did the center node.

For the same plate and loading, on Fig. 10 is shown a comparison of

the response curves for the center deflection with two grid sizes, with a

time interval of 0.25x10 -3 seconds being used for both curves. It is seen

that for practical purposes, the maximum deflections for a 12x12 grid are

the same as those for a 6x6 grid, although the two curves are out of phase

at times.
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3. Moving Forces

The response of a square and a rectangular plate subjected to one

or more loads, moving with various velocities and along different paths on

the plate, has been investigated. Both simply supported and clamped bound-

aries have been used for these plates. The dimensions of the two plates are

shown on Fig. 11. Unless otherwise noted, a 6x6 grid was used in the

analysis of each of these plates, as indicated on Fig. 11. The smallest and

largest natural periods for the resulting finite element structures are given

on the figure.

The response curves for node deflections of the plates of Fig. 11,

subjected to various moving loads, are shown on Figs. 12 through 21. The

loading conditions, as well as the response curve for the deflection of the

center, i.e. node 25 (See Fig. 11. ), are presented on the figures. For

one case, an additional response curve for the deflection of node 9 (See

Fig. 11. ) is given. In each case, a static deflection curve is shown for com-

parison. It is of interest to note that the static deflection curve shown on

Fig. 13, obtained by the finite element solution, coincides with the corre-

sponding curve obtained by the more exact Navier solution 39.

Fig. 12 shows the response curves of the deflection of node 25 for

a single load moving along the centerline of the simply supported square

plate at velocities of 200, 400 and 600 in./sec. For velocity of 600 in./sec.,

the problem was solved by using time intervals, h, of 0.25x10 -3, 0.50x10 "3,

and 1.00xl0 -3 seconds. For all of these time intervals, the response

curves coincide and are thus shown as a single curve on Fig. 12. Since a
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time interval of 1.00xl0 -3 seconds yields the same results as the smaller

time interval, it may be concluded that a time interval even larger than

this could be used to obtain approximations to the response curve in

question. In subsequent problems, rather than find empirically the maxi-

mum time interval permissible for sufficient accuracy in each case, a

time interval is used that is sufficiently small to avoid divergence. Thus

in subsequent problems in this section, for convenience a time interval of

-3
0.50x10 seconds is adopted for the simply supported plates, and

-3
0.25x10 seconds is used for the stiffer, clamped plates.

From Fig. 12 it is seen that the maximum dynamic deflection occurs

for the highest velocity, 600 in./sec. This is also true for node 9, for

which the response curves are shown on Fig. 13, as well as for all other

nodes, for which the response curves are not presented here. Inspection

of Figs. 14, 18 and 19 indicates that in all cases, the maximum dynamic

deflection occurs when the load is moving with the highest velocity. How-

ever, it would not be correct to conclude that the maximum dynamic de-

flection is always greater with higher velocities of the moving load, al-

though this is usually the case. For example, on Fig. 18, the maximum

dynamic deflection for velocity of 200 in./sec, is slightly greater than for

velocity of 400 in./sec. However, from the response curves of Figs. 12,

13, 14, 18 and 19, it is seen that the amplitudes of the oscillations of a

dynamic curve about the static curve, measured from the latter curve, are

in general greater for greater velocities for a particular plate.
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It is of interest to note from Fig. 12 that, for velocity of 200 in./

sec., after the load leaves the plate the center node keeps vibrating at

approximately the same frequency with which it vibrated about the static

position when the load was on the plate.

Fig. 14 shows the response curves for the center deflection of the

square plate with clamped boundaries and with the loadings used for the

simply supported plate of Fig. 12. Comparison of the response curves of

Figs. 12 and 14 indicates that for a given velocity the dynamic deflections

deviate from the static deflections much less for the stiffer structure,

i. e., for the fixed plate.

The fixed plate shown on Fig. 14 was also analysed for the case of

a single load moving at velocity of 200 in./sec., along the path indicated

on the figure, and using a 12x12 grid. The response curve for the deflec-

tion of the center node of the plate in this case coincides identically with

the case when a 6x6 grid was used. Thus the response curve for velocity

of 200 in./sec, shown on Fig. 14 is identical for the two grid sizes used,

justifying the validity of the coarser grid.

On Fig. 15 is shown the response curve for the center deflection of

the simply supported square plate subjected to five loads of 0.25 K each

moving along the centerline of the plate at equal velocities at 400 in./sec.,

as shown on the figure. It is seen from this figure that the maximum dy-

namic deflection occurs shortly after the center load has crossed the center

of the plate. It is also interesting to note from this figure that the difference



78

between the dynamic and static deflections are appreciably greater when the

loads are leaving the plate than they are when the loads are entering the

plate. That is, the greatest differences in these curves occur at times

after the maximum static deflection has been attained. This does not

happen in the case of a single load of 1. OK moving at the same velocity, as

seen from Fig. 12.

On Figs. 16 and 17 are shown the response curves for the center

deflection of a simply supported and a clamped rectangular plate, sub-

jected to a single 1. OK load moving along the centerline x = 45" at velocities

of 200 and 400 in./sec., respectively. Comparing the response curves

for velocity of 200 in./sec, for the simply supported rectangular plate,

as shown on Fig. 16, and for the same velocity for the square plate, as

shown on Fig. 12, it is seen that the ratio of the maximum dynamic deflec-

tion to the maximum static deflection is almost identical in each case.

This_ however, is not the case for a velocity of 400 in./sec, for the corre-

sponding clamped plate, as seen from Figs. 14 and 17.

It is of interest to note from Figs. 12 through 17 that the ratio of

the average period of oscillation of the dynamic curve about the static curve

to the fundamental period of the particular finite element plate structure

does not vary greatly. This is not apparent at first glance from the re-

sponse curves with the coordinate axes used. However, if the abscissa-

axis is converted to time, it is seen that the ratio in question, for each of

the curves on Figs. 12 through 17, is between approximately 6.2 and 6.9.
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For a load moving across a plate in an arbitrary direction, however, this

is not the case. For example, from the response curves on Figs. 18 and

19, for a load moving diagonally across the simply supported and clamped

plates, respectively, the ratio referred to above may be seen to vary

greatly for different velocities.

Comparing the response curves of Figs. 18 and 19 with the ones

of Figs. 12 and 14, it is seen that for any particular velocity the maximum

dynamic deflection is smaller for the case when the load moves diagonally

across a plate than it is when the load crosses the plate along its center-

line.

On Figs. 20 and 21 are shown the response curves for the center

deflections of simply supported and clamped plates, respectively, sub-

jected each to five loads traversing the plates at an arbitrary direction.

In order to draw any general conclusions for plates subjected to an ar-

bitrary number of loads moving along an arbitrary direction, as for the

cases shown on Figs. 20 and 21, additional numerical studies would have

to be made.

To illustrate the flexibility of the method presented in this report,

two continuous plates, as shown on Figs. 22 and 24, are analyzed, each

for a single load moving at a velocity of 400 in./sec, along the centerline

of the plate across the two spans.

grid used for the half-plate of Fig.

By considering symmetry, the 12x6

22 results in 176 degrees of freedom for

the half of the structure considered. The central processing time used by

the computer for this problem was 265.5 seconds. Using similarly a 12x3

grid for the half-plate of Fig. 24 results in 83 degrees of freedom for the
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half of that structure. In this case the central processing time used was

72.1 seconds. The computer times used by these two problems are by far

the greatest for any of the problems considered thus far.

On Figs. 22 through 25 are presented the response curves for the

deflection of the center node of each span of the two continuous plates. It

can be seen from the response curves on Figs. 22 and 23 that the maximum

dynamic deflection is greater for the center of the left-hand span than for

the center of the other span, while, on the other hand, the reverse is true

for the continuous plate of Fig. 24, as seen from the response curves on

Figs. 24 and 25. This is perhaps explained by the fact that in the first

case the vibration induced is of such frequency that the maximum dynamic

deflection in the left-hand span occurs at almost the same instant as does

the maximum static displacement in that span, while for the other continuous

plate, as seen from Fig. 25, the frequency of vibration induced is such that

the maximum dynamic and static deflections occur at almost the same in-

stant for the right-hand span.

4. Moving Masses

The numerical results presented in this section are for a clamped

§quare plate subjected to a single load-mass moving along the centerline

of the plate, as shown on Fig. 26, and for a clamped rectangular plate

subjected to three load-masses traversing the plate at an angle chosen

arbitrarily, as shown on Fig. 27. For each plate, a 6x6 grid with a time

interval of integration h of 0.50x10 -3 sec. was used, unless otherwise
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mentioned. The masses of the moving loads used in the solution were those

due to a gravitational acceleration of 32.2 ft./sec. 2.

For the square plate, on Fig. 26 are shown the response curves for

the center node deflection for velocities of 100, 200, and 400 in./sec, for

the load-mass. The static deflection curve for the load is also shown. For

the case of the load-mass moving with a velocity of 400 in./sec., a time

interval h of 0.25x10 -3 sec., as well as one of 0.50x10 -3 sec. was used.

The response curves for deflection were found to coincide for these two

time intervals. Thus the same response curve shown on Fig. 26 for velocity

of 400 in./sec, was obtained when each of these time intervals was used.

For all other response curves referred to in this section, only a time in-

terval of 0.50x10 -3 sec. has been used.

Upon comparison of the response curves for velocities of 200 and

400 in./sec, shown on Fig. 26 with the response curves for the same

velocities on Fig. 14, it is seen that the inclusion of the inertia of the mov-

ing load has a considerable effect on the solution. It is seen that the maxi-

mum dynamic deflection is greater, for each of the two velocities, when

the effects of the mass of the load are included in the analysis.

For the solution of the square plate of Fig. 26, symmetry was used

for each of the cases considered. With a time interval of 0. 50x10 -3 sec-

onds, the central processing times used by the computer for the velocities

of 100, 200 and 400 in./sec, were 291.2, 148.8, and 80.3 seconds, re-

spectively. When a time interval of 0.25x10 -3 seconds was used for the

velocity of 400 in./sec., the time required was 153.0 seconds.



On Fig. 27 is shown a clamped rectangular plate subjected to three

moving loads of 0.5 Kips each, with their masses included. The path of

the moving load-masses indicated on the figure was chosen arbitrarily.

The response curve for the center node deflection, along with the static

deflection curve, has been plotted on this figure for the load-mass moving

at 100 in./sec. For the same problem the dynamic response curve for

node number 11 (See Fig. 27) is compared with the corresponding static

deflection curve on Fig. 28. It is of interest to note from Figs. 27 and

28 that as the load-masses are leaving the plate, rather radical changes

are occurring in the periods of vibration of the system. Such changes did

not, in general, occur for the cases when the mass of the load or loads

was not included in the analysis.

For the latter problem discussed above, for which 75 degrees of

freedom were used, the computer required 34 min. 7 sec. for central

processing time.

B. Cylindrical Shell

1. General

Numerical results are presented here for a circular cylindrical

"shell subjected to impact loads. The loads considered are applied in such

a manner as to permit the use of double symmetry.

Since the framework analogy adopted here has not been previously

used for the static analysis of cylindrical shells, a cylindrical shell

subjected to static loads is considered to illustrate the accuracy of this

framework analogy for a particular problem.
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The static problem considered here has been used by Mohraz and

Schnobrich 31 to compare their solution to a Fourier series solution of the

differential equation. The circular cylindrical shell is subjected along its

longitudinal edges to a sinusoidal load as indicated on Fig. 29. The trans-

verse edges of the shell are supported by diaphragms and the longitudinal

edges are free. The dimensions of the shell, along with the shell material

properties, are shown on Fig. 29. In Table 3 are compared the radial

center node deflections for various grid sizes for a shell quadrant. Also

shown in the table is the result obtained by Mohraz and Schnobrich 31 and

the one obtained from a Fourier series solution 31. It is seen that 6x6 and

7x7 quadrant grids yield answers that differ from the Fourier series solu-

tion by 9.7% and 7.2%, respectively.

2. Impact Loads

Numerical results presented are for a constant and a triangular

impact load. For both cases, the rotary inertia effect of the structure has

been neglected, and the mass matrix has been obtained by the direct lumping

of mass parameters as described in the Appendix.

The circular cylindrical shells used for the two problems in this

section, together with their loadings, are shown on Figs. 30 and 31.

Double symmetry, with a 6x6 grid for a quadrant, is used for both problems.

The loads shown on the figures are applied radially at the nodes. The shell

material has a modulus of elasticity of 30,000 ksi and a Poisson's ratio of

0.30. Fig. 32 shows the response curve for the radial deflection of the

center node.



91

TABLE 3

Deflections of a Cylindrical Shell (in.)

Radial Deflection at Center

3x3 Quadrant Grid

4x4 Quadrant Grid

5x5 Quadrant Grid

6x6 Quadrant Grid

7x7 Quadrant Grid

Mohraz and Schnobrich

Fourier Series

0. 6508

0.7580

0. 8198

0.8575

0.8819

0. 888

0.95
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E= 50_OO0 ksi

v= O. 15

RADIUS = @00.0"

FT..G. 29-CYLINDRICAL- SNELL USED FOR COMPARISON

OF ,STATIC SOLUTION
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FIG, _£- CYLINDRICAL 5HELL WITH HINGED LONGITUDINAL

EDGE5 AND DIAPHRAGM SUPPC_TED TRANSVERSE
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For the problem of Fig. 30, the shell is completely fixed at its

boundaries. With only a quadrant of the shell used in the solution, 181

degrees of freedom were considered. The response curves for the radial

deflections of the center node and node number 28 (See Fig. 30. ), along

with the corresponding static deflections, are shown on Figs. 32 and 33.

With a time interval h of 0.10xl0 -4 seconds used for this problem, the

central processing time required for the computer was 7 min. 39 sec.

For the problem of Fig. 31, the transverse ends of the shell are

supported by diaphragms and the longitudinal edges are hinged. 204 degrees

of freedom are considered for a quadrant of this structure. The response

curve for the radial deflection of the center node is plotted on Fig. 34

along with the static deflections. The central processing time required

by the computer for this solution was 9 min. 23 sec., with a time interval

of 0. 10xl0 -4 sec. being used.

To draw any conclusions on the dynamic behavior of cylindrical

shells, additional problems have to be studied. Since the solution of

cylindrical shell problems requires the consideration of a much larger

number of degrees of freedom than does the solution of plate problems, the

study of moving loads and load-masses requires considerably more com-

puter time and storage capacity for cylindrical shells than for plates.
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FURTHER APPLICATIONS OF THE METHOD

The method of analysis developed in this research can be modified

to analyze various other types of structures.

The extension of the procedure to composite structures is obvious.

All that is required is to include the stiffness matrix for each additional

structural component in the analysis. Thus, for example, flat slabs sup-

ported on columns or plates with stiffening beams can be analyzed. More

complex composite systems, as those associated with aircraft, space

vehicle, and nautical structures can be analyzed as well. The work of

H. Allik 1 on the response of space frames to dynamic loadings is of interest

in conjunction with these modifications.

Using triangular elements 6' 7, 8, 27, 28 the procedure presented can

be modified to analyze shells and plates of arbitrary shape. Changes have

to _ made only to account for the different stiffness matrix sizes.

The method of analysis presented can readily be applied to plates

and shells of variable thickness° With the thickness varying from point to

point in the continuous medium of the structure, an approximate element

stiffness matrix can be calculated by using for the element thickness the

average of the thicknesses at the nodes of the element 2. Numerical ex-

amples of static problems for plates with variable thickness have been ob-

tained by R.J. Melosh 2 and by O.C. Zienkiewicz and Y.K. Cheung 4.

Melosh 2 has also analyzed for static loading a low aspect ratio wing by

considering it as a plate of variable thickness, with spar and rib stiffnesses
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included only approximately. In general, these stiffnesses can be included

more exactly as indicated by M.J. Turner et a141. All of the problems

referred to above can be analyzed for dynamic loadings by modifications

of the procedure that has been presented.

The procedure that has been presented can also be used for ortho-

tropic plates by substituting the orthotropic plate element stiffness matrix

derived by O.C. Zienkiewiecz and Y. K.

that has been used here.

4
Cheung for the stiffness matrix

Plates and shells with openings can also be analyzed for dynamic

loadings. It is necessary only to omit the element stiffness matrim or

matrices corresponding to the physical elements omitted. However, it is

expected that in the areas of stress concentration near the opening, poor

approximations are obtained with rectangular elements unless a relatively

fine grid is used for the whole structure. It is therefore advantageous to

use triangular elements for such a problem, so that a relatively free grid

can be used near the opening while a more coarse grid can be adopted for

the remainder of the structure.

Recent developments of element stiffness matrices for solids 8' 42, 43

"enables the analysis at such structures for dynamic loadings by modifica-

tions of the method presented here. The assumed displacement functions

used by R.J. Melosh 43 to derive a solid element stiffness matrix can be

adopted in conjunction with the necessary modifications of the procedure

to replace, for example, the displacement functions A. (x, y) used here for

the plate analysis.
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S UMMARY AND CONCLUSIONS

A numerical method has been presented for the analysis of thin

rectangular plates and cylindrical shells subjected to moving loadings.

Stationary time-varying loads, as well as multiple loads and load-masses

moving at constant velocity have been considered in the analysis. Elastic,

small deflection theory was used in the formulation of the problem.

For the rectangular plate as well as the cylindrical shell, the con-

tinuous medium of aninfinite number of degrees of freedom was reduced to

a system with a finite number of degrees of freedom by means of a frame-

work analogy. Displacement functions were assumed for the finite ele-

ments to obtain equivalent node forces for the applied force and mass load-

ings. The simultaneous differential equations of motion governing the be-

havior of the finite element structures were solved by the linear accelera-

tion method of numerical integration. The method of analysis presented is

equally valid for arbitrary boundary conditions and for arbitrary interior

re straint s.

Numerical results have been presented for square and rectangular

plates, for continuous plates, and for circular cylindrical shells. Plates

subjected to impact loads, moving forces and moving load-masses were

included in the numerical studies. For the cylindrical shells, only impact

loads were considered. For each of the problems solved, only node dis-

placements were calculated.
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The numerical studies indicated that a relatively coarse grid may

be used for the finiteelement model to replace the actual continuous

medium of the structure in order to yield acceptable resuRs for the de-

flections. For the square and rectangular plates considered, a 6x6 grid

was sufficientto study the deflections.

The acceptability of a relatively coarse grid for the study of de-

flections leads to the conclusion that, for the loadings considered, the

dynamic response depends predominantly on the lower natural modes of

vibration of the system considered.

In the numerical studies, comparisons were made for the effect of

time intervals used for integration, grid sizes used for the finiteelement

structure, various velocities of moving loads and load-masses, and paths

of the traverse of moving 1oadings. However, itwas seen that numerous

additional studies would have to be made to draw general conclusions on

the effect of the various parameters on the dynamic behavior of rectangular

plates and cylindrical shells.

Modifications of the procedure presented for other types of struc-

tures has been discussed.
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NOMENCLATURE

a

aL, a R

A.
1

Ai (x, y)

b

B i (x, y)

cL

d..

ij

F *l

k drj

D
S

E

F.
1

x-coordinate of forcing function

angles defined on Fig. 7

area of beam i of a framework model element; abbreviation

for A i (x, y)

displacement function (See Appendix. )

y-coordinate of forcing function

displacement function (See Appendix. )

length of a typical element in x-direction

geometric transformation matrix for shell element i

element of matrix [d* ]

matrix defined by Eq. (23b) or (44c)

element r matrix defined in Eq. (22) or 143_

number of degrees of freedom of the structure in deflection

matrix defined by Eq.

matrix defined by Eq.

(24b) or (45b)

(68b)

modulus of elasticity of plate material

matrix defined in Eq. (51a), (55a), (61), or (69a)

i-th equivalent node force

vector of equivalent node forces for element i
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GJ

h

I

*
k..

1j

g.*

L

L
X

Ly

mij

M

M
S

vector defined in Eqs. (51b), (55b), (61), or (69b)

torsion constant, used with a subscript

plate or shell thickness; time increment

beam moment of inertia for framework model, used with

subscripts or superscripts

element of matrix [k*]

stiffness matrix for the discrete element structure

matrix defined by Eq. (23a) or (44b)

stiffness matrix for i-th element framework model

matrix defined in Eq.
£An

(22) or _,_oj

matrix defined in Eq. (24c), (45c), or (60a)

matrix defined by Eq. (68c)

length of element in y-direction

plate length in X-direction

plate length in Y-direction

element of matrix I m*]

mass matrix for the discrete element structure

mass matrix for element i

matrix defined in Eq. (23c) or (44d)

mass of moving load

number of equivalent node moments from all moving masses
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[M]ll

N
S

P

P.
1

qi

Qi

rL

S.
1

matrix defined by Eq. (24a) or (45a)

matrix defined by Eq. (68a)

number of degrees of freedom of the structure

magnitude of forcing function

i-component of forcing function P

i-th node displacement component in system coordinates

vector of node displacements in system coordinates

vector of node displacements of element i in system
coordinate s

i-th component of generalized node forces in system
coordinates

vector of node forces due to externally applied forces

vector of equivalent node forces

vector of external loads applied at nodes

vector defined by Eq. (68d)

distance between diagonally opposite corners of an element

vector of resultant node forces from all external loadings

vector of inertia forces at nodes

vector of inertia forces at nodes of element i

i-th component of generalized internal node forces of an
element

vector of internal forces at nodes of element i
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T
S

Uo

1

{u}
{ui}

V
X

V
Y

w (x, y, t)

w ° (x,y, t)

w (x,y, t)
X

xyz

XYZ

5U.
1

time coordinate

shortest natural period of discrete element structure

i-th node displacement of an element in element coordinates

vector of node displacements in element coordinates

vector of node displacements of element i in element
coordinate s

velocity of moving forcing function in x-direction

velocity of moving forcing function in y-direction

deflection of an element in z-direction under moving mass

virtual deflection of an element in z-direction under moving

forcing function

virtual displacement of an element in x-direction at point of

application of forcing function

element coordinates of plate or shell element

system coordinates of plate or shell

i-th virtual element node displacement

[
[
(.

_X

-1

)

Poisson's ratio of plate material

denotes inverse of a matrix

denotes transpose of a matrix

denotes differentiation with respect to time

denotes differentiation with respect to x
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APPENDIX

A. Element Stiffness Matrices

The stiffness matrix for the framework model shown in Fig. 3,

which has been substituted in the analysis for each typical plate element

shown on Fig. 2, is given on the next page. This stiffness matrix is defined

by Eq. (1).

The stiffness matrix for a cylindrical shell element can either be

assembled from the stiffness matrices of each of the six beams of the frame-

work element shown with its properties on Fig. 8, or it can be assembled by

first considering the stiffness matrix for a p_te in flexure, shown on p. A2,

and for a plate under plane stress. The latter approach is adopted here.

Therefore the element stiffness matrix for plane stress has been assembled,

and is shown on p. A3. For convenience, the rows and columns of this

matrix have been numbered to correspond to the actions indicated on Fig. 5.

The stiffness coefficients used in the plane stress stiffness matrix on p. A3

have the following values:

Pl =- (P4 +p5 +p6 )

A3E c

P2 =--'i-- --3
r

AlE

P4 - cL
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!

12EI 2

P5 =
L 3

A3E c 2

P6- L
r

P7 =" (P9 +pl0 +pll )

t

6 EI 1

P8 =
(cL) 2

t

12 EI 1

P9 = (ca)3

A2E

Pl0 - L

A3E 1

Pll = L 3
r

P12 = 2 (P13 + P14 )

!

2 EI 2

P14 = L

Having the element stiffness matrix for bending out of plane, as shown on

p. A2, and the element stiffness matrix for plane stress, as shown on p.

A3, the 24x 24 cylindrical shell element stiffness matrix is assembled by

placing each of the elements of the first two matrices in the appropriate

row and column of the shell element stiffness matrix. Thus, for the
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plane stress stiffness matrix shown on p. A3, an element in row number i

and column number j is placed into the i-th row and j-th column of the

shell element stiffness matrix. The elements of the stiffness matrix for

out-of-plane bending shown on p. A2 are stored in the shell element stiffness

matrix in such a manner that their action numbers as indicated on Fig. 2,

used in conjunction with Eq. (1), will correspond to the numbering of the

same actions on Fig. 5 which is used in conjunction with Eq. (26) defining

the shell element stiffness matrix. Since the foregoing procedure can

easily be followed in programming for a computer, it was deemed unnec-

essary to present here the assembled cylindrical shell element stiffness

matrix.

B. Geometric Transformation Matrix for a Shell Element

The 24x 24 geometric transformation matrix [CiJ for shell element

i, which relates node displacements qi in the system coordinates to node

displacements u i in the element coordinates, as indicated by Eq. (27), is

[ci]

given by

[L']
[ '']

[L']
[a']
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where all the elements not shown are zero,

and

1 0 0 1

ILl = 0 cosa L sina L

0 -sina L cosa L

and where

1 0 0 1

= 0 cosa R -sina R

0 sin a R cos a R

where the angles a L and a R

shell a L is equal to a R.

are shown on Fig. 7. For a circular cylindrical

C. Plate Element Mass Matrix

An approximate mass matrix for a plate element is obtained by direct

lumping of mass parameters at the nodes at the element. The following as-

sumptions are used in this approximation:

1). One quarter of the element mass is assumed to be concentrated

at each node of the element.

2). For rotary inertia effect from the element, one quarter of the

element is assumed to rotate as a rigid body about each of the

nodes of the element, and the angle of rotation is assumed to be

equal to that of the corresponding node.

Then the diagonal elements of the plate element mass matrix are:

ucL 2

m 1 =m 4=m 7 =ml0=_
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gcL2 ( L 2 h 2 )m2 =ms=ms =roll =_ T +

_cL2 (c2L 2 h 2 )m 3 =m 6 =m 9 =m12 =_ _ + _--

where _, = plate mass per unit area

h = plate thickness

All other elements of the matrix are zero.

Alternately, the mass matrix can be obtained by using the assumed

displacement function A.(x, y)referred to in the derivation of equivalent

node forces. It has been shown 44, 45 that the element of the i-th row and

j-th column of the resulting plate element mass matrix is

cL L

2 2

mij = _ I I A(x'y)A(x'y)dxdyl j

-cL -L

2 2

D. Cylindrical Shell Element Mass Matrix

As for a plate element, also for a cylindrical shell element an

approximate mass matrix is obtained by direct lumping of mass parameters

at the nodes of the element.

mass matrix also hold here.

The assumptions used for the plate element

Moreover, it is assumed here that the effect

(A1)

of the rotary inertia associated with the node rotations about the Z-axis,

which is normal to the element, is negligible because the rotations referred

to are very small. With these assumptions, the diagonal elements of the
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24x 24 shell element mass matrix are-

cL 2
mi = T where i = 1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21

mi- 16 + where i = 4, 10, 16, 22

m. - 4-
I 16 4 where i = 5, 11, 17, 23

where i = 6, 12, 18, 24

All other elements of the matrix are zero. It should be noted that when the

foregoing mass matrix is transformed into system coordinates, in accord-

ance with Eq. (35), itwill no longer be a diagonal matrix.

Alternately, the mass matrix can be obtained by using the assumed

displacement functions A.l(x, y) and Bi(x , y). Thus the elements of the i-th

row and j-th column of this mass matrix can be calculated as follows:

By Eq° (A1) for i and j = 3, 4, 5, 9, 10, 11, 15, 16, 17, 21, 22, 23, and by

cL L

m'" =_I-2-1j I _"
-cL -L

I I

2 2

B i (x, y) Bj (x, y) dxdy (A2)

for i and j = 1, 2, 7, 8, 13, 14, 19, 20.

All other elements of the matrix are zero.

E. Displacement Functions A. (x,y)
1

A. (x, y) is the deflection of the plate element due to a node dis-
1

placement u. = 1 and u. = 0 for j _/i. (See Fig. 2. ) Since no exact functions
1 j

are available, assumed displacement functions A. (x, y) are used herein.
1
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Noting that there are 12 degrees of freedom for a discrete plate element, it

is assumed that A. (x, y) can be expressed as the following polynomial 1, 4, 5
1

with 12 undetermined constants

i 4x i i 2 c#x 3A.1 (x,y) :cil +ci2x +c3Y +c 2+c5xy+c6Y +

i i 2 i i i
+ c8x2y + CllX3y+ CgXy + cl0Y3 + Cl2Xy3

i i i

where Cl, c2, ..., el2 are the undetermined constants for A i (x, y).

By satisfying the 12 node displacements with Eq.

(A3)

(A3) and its derivatives

for the condition that u. = 1 and u. = 0 for iJj, a set of 12 simultaneous
1 ]

i i i
algebraic equations is obtained for the evaluation of ct, co, .... , cl o, in

which x and y in any one equation are evaluated in terms of the coordinates

of that node at which the displacement is satisfied by the equation. By re-

peating this procedure for i = 1, 2, ..., 12, the following expressions for

A. (x, y) are determined.
1

3

1 (2-3x-3y+4xy+xA 1 (x,y)= *-_

3 3 3

(A4)

1 2 _ 3A 2 (x,y)=+_(l-x-y+xy-y +_ 2 __ 3_2 (AS)

2 3

I (1-x-y-x +xy +xA3 (x,y):-
2 3

- - ;)el,+xy- (A6)

3 3 3 3

1(2+3x- 3y-4xy-x +y +x y+xy )A 4 (x,y) = +_ (A7)

2 2 3 3
-- - L

l(l+x-y-xy-y-xy +y +xy )_A s (x,y):÷_ (AS)
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where

2 3 2 3

A 6 (x,y)=-_(- l°x+y+x +xy+x -x y-x

3 3 3 3

1 3y 4xy + y +x y +--A 7 (x,y)=+_(2- 3x+ - -- x -- - - xy )

2 3 3 L
1 _ + ._ + _A 8 (x,y):+_(- 1 +x-y+ - -

2 3

1(l-x+- - xg+ A 9 (x,y)=-_ y-x -

2 3

3 3 3 3

l (2+3x +3y+ 4_y- x - y - _ y- _y )Al0(x,y)=+

2 2 3 3
1 ......... L

All(X,y)=+_(- l-x-y-xy+y +xy +y *xy )_

1

A12 (x,y)=-

2 3

(-1-x-y+x -_V _-_

2 3

- 2x
X =_

cL

The derivatives of A. (x, y) are
1

(A9)

(AI0)

(All)

(AI2)

(A13)

(A14)

(AI5)

hA.
1

- A.

bX 1_ X

2

(x,y) = _---_ A.I, x

hA.
I_A.

_y t,y

2
(x,y) = L A.-1, y

b2A" 4

I -A. (x,y)- A. --
b x 2 I,xx (cL)2 I,xx

b2A.
I 4

b x by - Ai, xy (x,y) - eL 2 A.l,xy--



All

_2A.

I _ A. (x,y) =-_- A. --
2 l, yy L _ 1, yyBy

D o

where the derivatives of Ai (x, y) with respect to x and y are obtained from

Eqs. (A4) thru (A15).

F. Displacement Functions B. (x, y)
1

B i (x, y) are defined analogically to A.1 (x, y) except that the displace-

ments associated with B i (x, y) correspond to plane stress condition of a flat

shell element. Again, since no exact functions are available for B i (x, y),

these displacements functions will be assumed. Recalling that eight dis-

46
placements are to be considered here, it is assumed that

1 [ i i i 1 i 2

= _ - v c4x )B i(x,y) _ c lx+c 2xy (c3x+

1 i 2 i i)"_c4Y _c6Y +c 7 for i = 1, 7, 13, 19

and

1 / i 1 i 2 i i

= _- . c4xYB i(x,y) _ v (clY+_c2Y)+c3Y

2
for i = 2, 8, 14, 20

i i

where Cl, c2, ...,

The sign convention

i
c 8 are eight undetermined constants for B i (x,y)-

and orientation for the displacements referred to

above is the same as for u. indicated on Fig. 5. The procedure
1

for determining the eight constants for each B. (x, y) is similar to the1

method of finding the constants for A. (x, y) explained in the previous sec o1

tion. Since the constants depend on the elastic properties of the shell
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material, the assumed displacement functions B i (x, y) have not been

determined explicitly here.


